If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+8t-21=0
a = 1; b = 8; c = -21;
Δ = b2-4ac
Δ = 82-4·1·(-21)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{37}}{2*1}=\frac{-8-2\sqrt{37}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{37}}{2*1}=\frac{-8+2\sqrt{37}}{2} $
| 10a+3a+3a-12a=12 | | 20r-17r+5r=16 | | 19y-11y-7y-y+3y=3 | | 5y+11=4y+17 | | 67+16=7y=2 | | u/5+7=-18 | | 2q−6=2 | | 19w+4w+4w-17w=13 | | 6y+16=7y | | x+19+2x+5=180 | | 9p-7p=20 | | 9-1-q=-4q-10 | | 3h-2h=17 | | 18=w–15 | | x+19+2x+5=90 | | 26-6q=-35 | | 4(w-6)=3(w=+1) | | 8+2z=8z-10 | | 19w-17w=10 | | -18=w–15 | | -6x+1=-3(2x+1)-5 | | 9.6x-15.4=4.3×+26.3 | | 12t-8t=4 | | 1.1=a=2.2 | | 19=5h+4 | | 5-g=-10-4g | | (2/5-x)×10=(-16) | | .1.1=a=2. | | 90=y+8y-50 | | 4-5q=-6q+10 | | 6f+10=8+4f | | .1.1=a=2.2 |